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 INTERNATIONAL ECONOMIC REVIEW
 Vol. 46, No. 1, February 2005

 INTERTEMPORAL COMPLEMENTARITY AND OPTIMALITY:

 A STUDY OF A TWO-DIMENSIONAL DYNAMICAL SYSTEM*

 BY TAPAN MITRA AND KAZUO NISHIMURA1

 Department of Economics, Cornell University, Ithaca, U.S.A.;
 Institute of Economic Research, Kyoto University,

 Yoshidahonmachi, Sakyoku, Kyoto, Japan

 We study the underlying structure of the two-dimensional dynamical system
 generated by a class of dynamic optimization models that allow for intertemporal
 complementarity between adjacent periods, but preserve the time-additively sep-
 arable framework of Ramsey models. Specifically, we identify conditions under
 which the results of the traditional Ramsey-type theory are preserved even when
 the intertemporal independence assumption is relaxed. Local analysis of this
 theme has been presented by Samuelson (Western Economic Journal 9 (1971),
 21-26). We establish global convergence results and relate them to the local anal-
 ysis, by using the mathematical theory of two-dimensional dynamical systems.
 We also relate the local stability property of the stationary optimal stock to the
 differentiability of the optimal policy function near the stationary optimal stock,
 by using the Stable Manifold Theorem.

 1. INTRODUCTION

 The theory of optimal intertemporal allocation has been developed primarily
 for the case in which the objective function of the planner or representative agent
 can be written as

 00

 (1) U(ci, C2 C...)- -C W(Ct)
 t=l

 where ct represents consumption at date t, w the period felicity function, and 8 e
 (0, 1) a discount factor, representing the time preference of the agent.

 An objective function like (1) leads naturally to the study of dynamic optimiza-
 tion problems of the following "reduced form":

 Maximize 0o t'u(xt, Xt+1)

 (2) subject to (xt, xt+i) E 2 for t E {0, 1, 2,...}

 xo = x

 * Manuscript received August 2002; revised January 2003.
 1 Earlier versions of this article were presented in a conference on nonlinear dynamics in Paris in

 June, 1999, and in a seminar in Kyoto University in January 2001. We are grateful to Jess Benhabib,
 Cuong Le Van, Roger Farmer, and Takashi Kamihigashi for comments received during these presen-
 tations. In particular, the final subsection owes much to an observation made by Takashi Kamihigashi.
 The current version has benefited from comments by five referees of this journal. Please address cor-
 respondence to: K. Nishimura, Institute of Economic Research, Kyoto University, Yoshidahonmachi,
 Sakyoku, Kyoto, Japan. E-mail: nishimura@kier.kyoto-u.ac.jp.
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 MITRA AND NISHIMURA

 where a E (0, 1) is the discount factor, X is a compact set (representing the state
 space), S c X x X is a transition possibility set, u: Q2 -> R is a utility function,
 and x E Xis the initial state of the system.

 The restrictive form of the objective function (1) has often been criticized,
 and alternative forms have been suggested. Since imposing no structure on U(cl,
 C2,...) will yield very little useful information about the nature of optimal pro-
 grams, the alternative formulations involve some restrictions, of course, and these
 basically take one of two forms.

 First, one can dispense with the time-additively separable nature of (1), by fol-
 lowing Koopmans (1960) and Koopmans et al. (1964), and postulate that there is
 an aggregator function, A, such that

 (3) U(ci2,2, ... ) = A(c, U(2, C3,...))

 A nice feature of (3) is that it preserves the recursive nature of the problem inherent
 in Ramsey-type problems based on (1). The restriction is that the independence
 of tastes between periods that was present in (1) is also implicit in (3). Optimal
 growth problems with (3) as the objective function have been investigated quite
 extensively, starting with Iwai (1972); a useful reference for this literature is Becker
 and Boyd (1997).

 Second, one can preserve the time-additive separable form, but explicitly model
 the intertemporal dependence of tastes by postulating that the felicity derived by
 the agent in period t depends on consumption in period t (ct), but the felicity
 function itself is (endogenously) determined by past consumption (ct-1). (The
 fact that "past consumption" is reflected completely in ct-1 is a mathematical
 simplification; consumption in several previous periods can clearly be allowed for
 at the expense of cumbersome notation and significantly more tedious algebraic
 manipulations.) This formulation leads to the objective function:2

 00

 (4) U(ci, c2, ...) = t- (ct, ct+l)
 t=l

 Models of optimal growth with intertemporal dependence in tastes, in which the
 objective function is similar to (4), have been examined by several authors.3 To the
 best of our knowledge, the specific form (4) was first used by Samuelson (1971),
 to capture the essential features of such intertemporal dependence of tastes.

 2 This objective function also arises in a somewhat different class of models, which study economic
 growth with altruistic preferences. For this literature, see, for example, Dasgupta (1974), Kohlberg
 (1976), Lane and Mitra (1981), and Bernheim and Ray (1987). The focus of this literature is however
 not on the socially optimal solution, but the intergenerational Nash equilibrium solutions.

 3 The earlier literature on this topic includes, among others, Chakravarty and Manne (1968), and
 Wan (1970). Heal and Ryder (1973) present a continuous-time model that accommodates a more
 general dependence structure.
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 INTERTEMPORAL COMPLEMENTARITY AND OPTIMALITY

 An objective function like (4) leads to the study of dynamic optimization prob-
 lems of the following "reduced form":

 Maximize L?0o StU(X Xt+l, Xt+2)

 (5) subject to (xt, xt+, Xt+2) E A for t E {0, 1, 2,...}

 (xO, xi) = (x, y)

 where 8 E (0, 1) is the discount factor, X is a compact set, Q c X x X is a transition
 possibility set, A = {(x, y, z) : (x, y) E Q and (y, z) E Q2}, u: A -> R is a utility
 function, and (x, y) E Q2 is the initial state of the system.

 Note that even under intertemporal dependence in tastes, we have a recursive
 structure in the dynamic optimization problem (5) very much like in (2) (and in
 optimization problems involving (3) as the objective function). The difference is
 that in dealing with a one capital good model (like the standard one- or two-sector
 models of neoclassical growth theory), the state space is X in problem (2), whereas
 it is a subset of X2 in problem (5). Thus, for problem (2), (optimal) value and policy
 functions are defined on X, and for problem (5), these functions are defined on
 QS c X2. In terms of examining the dynamic behavior of optimal programs, we
 are, therefore, dealing with a one-dimensional dynamical system for problem (2)
 and a two-dimensional dynamical system for problem (5).

 The structure of recursive problems like (5) are not as well understood as that
 of (2), and we feel that it is worthy of a systematic study. Specifically, one might
 explore two themes: (i) identifying the conditions under which the results of the
 traditional Ramsey-type theory are preserved even when the intertemporal in-
 dependence assumption is relaxed; (ii) examining alternative scenarios in which
 the asymptotic behavior of an optimal program is qualitatively different (from its
 traditional Ramsey counterpart) because of the presence of intertemporal com-
 plementarity. Local analysis of the first theme has been presented by Samuelson
 (1971) and of the second by Boyer (1978) and others. Our principal interest in this
 article is in establishing global results on the first theme, and in relating them to
 the local results, by using the mathematical theory of two-dimensional dynamical
 systems.4

 The plan of the article is as follows. After describing the model in Section 2, we
 develop the basic properties of the (optimal) value function, V, and the (optimal)
 policy function, h, in Section 3. A useful tool for our study is the 0-policy function,
 defined on X, by

 (6) ¢(x)=h(x,x) forx E X

 It is introduced in Section 3, and the circumstances under which it satisfies a
 "single-crossing condition" are examined.

 4 The second theme is explored in detail in Mitra and Nishimura (2001).
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 MITRA AND NISHIMURA

 Section 4 might be considered as providing the global analytical counterpart to
 Samuelson's (1971) local analysis of "turnpike behavior" in this model. We show
 that when the (reduced-form) utility function, u, is supermodular on its domain, A,
 then the optimal policy function is monotone increasing in both arguments. This
 property, together with the "single-crossing condition" on 0 allows us to estab-
 lish global asymptotic stability of optimal programs with respect to the (unique)
 stationary optimal stock, by using an interesting stability result for second-order
 difference schemes.

 In Section 5, we provide an analysis of the local dynamics of optimal solutions.
 To this end, we study the fourth order difference equation, which represents the
 linearized version of the Ramsey-Euler equations near the stationary optimal
 stock. This equation yields four characteristic roots and we show how two of them
 are selected by the optimal solution (assuming that the optimal policy function is
 continuously differentiable in a neighborhood of the stationary optimal stock).The
 roots selected by the optimal solution provide information about the speed of
 convergence of nonstationary optimal trajectories to the stationary optimal stock.

 The theory linking the derivative of the optimal policy function to the "dom-
 inated" characteristic root associated with the Ramsey-Euler equation, for the
 optimization problem (2) is, of course, well known. To our knowledge, the corre-
 sponding theory for problem (5) has not been developed in the literature.

 In Section 5.3, the optimal policy function is shown to be continuously dif-
 ferentiable in a neighborhood of the stationary optimal stock, by using the
 Stable Manifold Theorem.5 This validates the conclusions that are reached in

 Sections 5.1 and 5.2, by assuming this property.

 2. PRELIMINARIES

 2.1. The Model. Our framework is specified by a transition possibility set, Q,
 a (reduced form) utility function, u, and a discount factor, 8. We describe each of
 these objects in turn.

 A state space (underlying the transition possibilities) is specified as an interval
 X [0, B], where 0 < B < oo. The transition possibility set, Q2, is a subset of X2,
 satisfying the following assumptions:

 (Al) (0, 0) and (B, B) are in Q; if (0, y) E Q then y = 0.
 (A2) Q is closed and convex.
 (A3) If (x, y) e Q and x < x' < B, 0 < y' < y, then (x', y') E 2.
 (A4) There is (x, y) E Q with y > x.

 These assumptions are standard in the literature. Note that (A3) means that the
 transition possibility set Q allows free disposal, so long as the stock level does not
 exceed B. Assumption (A4) implies the existence of expansible stocks.

 5 The global differentiability of the optimal policy function for problem (2) has been studied by
 Araujo (1991), Santos (1991) and Montrucchio (1998). The relation of the characteristic roots asso-
 ciated with the optimal policy function to those associated with the Ramsey-Euler equation at the
 steady state has been studied for problem (2) by Araujo and Scheinkman (1977) and Santos (1991).
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 INTERTEMPORAL COMPLEMENTARITY AND OPTIMALITY

 Note that for all x E [0, B], we have (x, x) E Q. Associated with QS is the
 correspondence 4 : X-- X, given by xP(x) = {y: (x, y) E Q2}. Define the set

 A = {(x, y, z): (x, y) E Q and (y,z) E Q}

 The utility function, u, is a map from A to R. It is assumed to satisfy:

 (A5) u is continuous and concave on A, and strictly concave in the third
 argument.

 (A6) u is nondecreasing in the first argument, and nonincreasing in the third
 argument.

 In what follows, we will normalize u(0, 0, 0) = 0; also, we will denote
 maX(x,y,z)EAlI(x, y, z)I by B.

 The discount factor, 8, reflects how future utilities are evaluated compared to
 current ones. We assume

 (A7) 0 < 8 <1.

 2.2. Programs. The initial condition (which should be considered to be his-
 torically given) is specified by a pair (x, y) in Q2. A program (xt) from (x, y) is a
 sequence satisfying

 (7) xo = x, x1 = y, (xt, xt+l) E Q for t > 1

 Thus, in specifying a program, the period 0 and period 1 states are historically
 given. Choice of future states starts from t = 2. Note that for a program (xt) from
 (x, y) E Q2, we have (xt, xt+l, Xt+2) E A for t > 0.

 An optimal program (Xt) from (x, y) E S2 is a program from (x, y) satisfying

 00 00

 (8) E tu(xt, X,t, Xt+2) < E tu((xt, xt+l, -t+2)
 t=0 t=0

 for every program (xt) from (x, y).
 Under our assumptions, a standard argument suffices to ensure the existence of
 an optimal program from every initial condition (x, y) E QS. Using Assumptions
 (A2) and (A5), it can also be shown that this optimal program is unique.

 2.3. Value and Policy Functions. We can define a value function, V: Q - R by

 00

 (9) V(x, y) = E atu(t Xt+l, Xt+2)
 t=0

 where (xt) is the optimal program from (x, y). Then, V is concave and continuous
 on Q2.
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 MITRA AND NISHIMURA

 It can be shown that for each (x, y) E Q, the Bellman equation

 (10) V(x, y) = max [u(x, y, z) + V(y, z)]
 (y,z)6Ql

 holds. Also, V is the unique continuous function on Q, which solves the functional
 equation (10).

 For each (x, y) E Q, we denote by h(x, y) the value of z that maximizes [u(x, y,
 z) + SV(y, z)] among all z satisfying (y, z) E Q. Then, a program (xt) from (x, y)
 Q2 is an optimal program from (x, y) if and only if

 (11) V(Xt, Xt+i) = u(xt, xt+l, xt+2) + aV(xt+l, xt+2) for t > 0

 This, in turn, holds if and only if

 (12) Xt+2 = h(xt, xt+1) for t > 0

 We will call h the (optimal) policy function. It can be shown by using standard
 arguments that h is continuous on 2.

 2.4. Two Examples

 2.4.1. Optimal growth with intertemporally dependentpreferences. The exam-
 ple (which follows Samuelson, 1971, and Boyer, 1978, closely) captures the feature
 that tastes between periods are intertemporally dependent. Such a model can be
 described in terms of a production function, f, a welfare function, w, and a discount
 factor, 8.

 Let X= [0, B] be the state space with 0 < B < oo. The production function, f,
 is a function from X to itself, which satisfies

 (f) f(O) = 0, f(B) = B; f is increasing, concave and continuous on X.

 The welfare function, w, is a function from X2 to IR, which satisfies

 (w) w is continuous and concave on X2, and strictly concave in the second
 argument; it is nondecreasing in both arguments.6

 The discount factor, 8, is as usual assumed to satisfy:

 (d) 0 < < 1.

 A program, in this framework, is described by a sequence (kt, ct), where kt
 denotes the capital stock and ct the consumption in period t. The initial condition
 is specified by (k, c) > 0, where k + c < B.

 6 Boyer (1978) assumes that w is increasing in both arguments. Samuelson (1971) does not; he
 assumes instead that w(c, c) is increasing in c. It is this latter assumption that is crucial in proving the
 uniqueness of a stationary optimal stock in this model, and therefore of our "single-crossing property";
 see Section 3.3.
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 INTERTEMPORAL COMPLEMENTARITY AND OPTIMALITY

 Formally, a program (kt, ct) from (k, c) is a sequence satisfying

 (ki, cl) = (k, c), kt+1 = f(kt) - Ct+l for t > 1

 ( ~ 0 < Ct+l < f(kt) for t > 1

 An optimal program from (k, c) is a program (kt, ct) satisfying

 00 00

 (14) t-lw(ct,t+l) < 8- W(Ct,ct+l)
 t=l t=l

 for every program (kt, ct) from (k, c).
 To reduce the optimality exercise in (14) subject to (13) to the one in (5), we
 can proceed as follows. First, the transition possibility set, Q, can be defined as

 2 = {(x, y) :x E X,O 0 y < f(x)}

 Second, the reduced form utility function can be defined, for (x, y, z) in A as

 u(x, y, z) = w(f(x) - y, f(y) - z)

 Finally, the initial condition (k, c) in the example translates to the initial condition
 in the framework of Section 2.2 as (x, y) = (f-l(kl + cl), kl). That is, x is the
 capital stock (in period 0) that produced the output (kl + cl) in period 1, that
 was split up between consumption (cl) and capital stock (kl) in period 1; y is the
 capital stock in period 1. The choice of consumption decisions, ct, starts from t >
 2; correspondingly, the state variable, xt, is determined for t > 2 by the following
 equation:

 (15) xt+1 = kt+1 = f(kt) - ct+ for t > 1

 It is worth noting that in the model of Samuelson (1971) there is no maximization
 with respect to cl. This is because in order for his problem to be well posed, one
 needs to know both ko and Cl (and, therefore, both xo and xl in terms of the
 problem stated in (5)). The information about cl is needed to define the welfare
 function w(cl; C2). That is, the welfare in period 2 depends on the choice of C2, but
 the welfare function itself is determined endogenously by past consumption (c1).7

 2.4.2. Optimal harvesting of a renewable resource with delayed recruitment.
 The theory of management of renewable resources deals with the issue of op-
 timal harvesting of biological populations, such as various species of marine

 7 Of course, variations of problem (5) can arise, where the last line of (5) would simply say xo = x.
 Solving such a problem would involve solving (5) and in addition solving for the "correct" xl. Clearly,
 an optimal solution of such a problem must solve (5), and therefore inherit all the dynamic properties
 of such a solution, as described in this article.
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 life. For many species, recruitment to the breeding population takes place only
 after a delay. Clark (1976) has modeled this phenomenon by describing the
 population dynamics by a delay-difference equation, instead of the standard first-
 order difference equation that is commonly used in the literature on renewable
 resources. We describe a simple version of his model where the delay involved is
 two periods.8

 The model can be described formally in terms of a recruitment function, F, a
 return function, W, a survival coefficient, X, and a discount factor, 8.

 The recruitment function, F, is a function from R+ to itself which satisfies

 (F) F(0) = 0; F is increasing, concave and continuous onX; limxoo[F(x)/x] > 1,
 limx,[F(x)/x] = 0.

 The return function, w, is a function from ]R+ to I, which satisfies

 (W) W is continuous, nondecreasing and strictly concave on R+.

 The survival coefficient, X, satisfies

 (s) 0 < < 1.

 The discount factor, 8, is as usual assumed to satisfy

 (d) 0<6<1.

 Given (F), there is a unique positive number B, such that [F(B)/B] = (1 -
 X). Then, defining f(x) = F(x) + Xx for all x E R+, we see that (i) f(B) = B,
 (ii) B > f(x) > x for x e (0, B), and (iii) B < f(x) < x for x > B. Thus, it is natural
 to choose the state space to be X= [0, B].

 A program, in this framework, is described by a sequence (kt, ct), where kt
 denotes the biomass of the adult breeding population and ct the harvest of this
 population in period t. The initial condition is specified by (k, k') > 0, where k <
 B and k' < B.

 Formally, a program (kt, ct) from (k, k') is a sequence satisfying

 J (ko, ki) = (k, k'), kt+l = ,kt + F(kt-1) - ct+l for t > 1

 ~(16) l0 < ct+i < Xkt + F(kt_1) for t > 1

 Note that for a program (kt, ct) from (k, k') < (B, B), we have (kt, ct) < (B, B) for
 all t > 2, and this justifies our choice of the state space as X= [0, B].

 An optimal program from (k, k') is a program (kt, ct) satisfying

 00 00

 (17) E t- W(ct+l) < t-W(t+i)
 t=l t=l

 for every program (kt, ct) from (k, k').

 8 The modeling of the recruitment delay as two periods in our formulation of the model of renewable
 resource management is a mathematical simplification; recruitment delays of longer duration can
 clearly be allowed for. The corresponding theory is somewhat harder to present and analyze.

 100

This content downloaded from 216.165.95.159 on Thu, 29 Aug 2019 18:48:46 UTC
All use subject to https://about.jstor.org/terms



 INTERTEMPORAL COMPLEMENTARITY AND OPTIMALITY

 To explain the population dynamics, the adult breeding population ko at time
 0 yields a "recruitment" to the population in period 2 (that is, after a delay of
 two periods) of F(ko). Part of the adult breeding population k1 at time 1 does not
 survive beyond period 1; the remaining part is Xkl. The total available output of
 the renewable resource at time 2 is, therefore, F(ko) + Xkl. A part of this resource
 (c2) is harvested in period 2. The remainder of the resource (F(ko) + Xk1 - c2)
 becomes the adult breeding population k2 at time 2. This process is then repeated
 indefinitely.

 To reduce the optimality exercise in (17) subject to (16) to the one in (5), we
 can proceed as follows. First, the set, A, can be defined as

 A = {(x, y, z) :x E X, y E X, 0 < z < y + F(x)}

 Second, the reduced form utility function can be defined, for (x, y, z) in A as

 u(x, y, z) = W(Xy + F(x) - z)

 Finally, the initial condition (k, k') in the example translates to the initial condition
 in the framework of Section 2.2 as (x, y) = (k, k'). The choice of consumption
 decisions, ct, starts from t > 2; correspondingly, the state variable, xt, is determined
 for t > 2 by the following equation:

 (18) Xt+i = kt+l = Xkt + F(kt-1) - ct+1 for t > 1

 Note that the dynamic optimization problem of the form (5) arises in the renew-
 able resource example from the (biological) production side of the model instead
 of the preference side.

 3. BASIC PROPERTIES OF VALUE AND POLICY FUNCTIONS

 In this section, we examine some basic properties of the value and policy func-
 tions. These properties will be useful in conducting the analysis in the following
 sections.

 3.1. Value Function. We proceed under the following additional assumption:

 (A8) There is x in (0, B), such that (x, x/8, x/82) e A, and 0 = u(x, x/8, x/82) >
 u(0, 0, 0) = 0.

 Assumption (A8) is a S-productivity assumption jointly on (A, u, 8). It is analo-
 gous to the 8-productivity assumption in the usual reduced-form model, where it
 is used to establish the existence of a nontrivial stationary optimal stock.

 LEMMA 1. Let N > 2 be a given positive integer. Defining x = SNx, we have (x,
 x/) E Q2, and

 V(x, x/8) > [(N- 1)0/x]x

 101
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 PROOF. Since (x,, x/6) E Q and (0, 0) E 2, we have (6nx, 6n(xc/)) E Q for
 n > 1. Using this observation, the sequence (xt) = (x, (x/S), (x/I2),..., (x/8N),
 (x/8N+), O, 0,... ) is a program from (x, (x/S)). Note that (x/6N) = x, (x/6N+1) =
 (x/A), and since (x, x/6, x/62) E A by (A8), we have (x, x/6, 0) E A by (A3), and
 u(x, x/8, 0) > u(x, x/8, x/82) > 0. Also ((x/^), 0) E Q and (0, 0) E 2 imply that
 (x/6, 0, 0) E A, and u(x/S, 0, 0) > u(0, 0, 0) [by (A6)] = 0. For 0 < t < N - 2

 U(Xt, Xt1, Xt+2) = U(X/6t, X/6t+l, X/,t+2) = U(X8N-t X8N-t-1 X6N-t-2)

 > NN-tu(X /, x/ /82) + (1 - N t)U(O,, ,0)

 Thus, for 0 < t < N - 2, Stu(xt, Xt+l, Xt+2) > SNu(X, x/6, x/82), and we have

 N-2

 V(x, x/6) > E 6tu(Xt, Xtl, Xt+2) > (N- 1)6SN = [(N- 1)0/x]x
 t=O

 which establishes the Lemma. 0

 PROPOSITION 1. The value function, V, satisfies the property

 (20) [V(x, x/)/x] -> oo as x -- 0

 PROOF. For (x, x/8) e Q, and 0 < X < 1, we have V(Xx, )x/6) > XV(x, x/8) +
 (1 - ).)V(0, 0) = kV(x, x/6). Using Lemma 1, and defining the sequence
 {x(N)} by: x(N) = SNx for N = 2, 3,..., we have [V(x(N), x(N)/S)/x(N)] -
 oo as N -- oo. Then, (20) follows since for x E [6N+lx, SNx], V(x,x/S)/x >
 [V(sNX, SN(X/S))/NX].

 PROPOSITION 2. The value function, V, satisfies the property

 (21) [V(x, x)/x] -> oo as x -- 0

 PROOF. For 0 < x < x, we have (x, x/6) e Q2, and (x, 0) e Q, so (6x + (1 - 6)x,
 6 (x/8) + (1 - 8) · 0) e Q; that is, (x, x) e Q. By concavity of V, we have

 V(x, x) = V(Sx + (1 - 8)x, 8(x/) + (1 - 8) 0)

 > SV(x, x/8) + (1 - S)V(x, 0)

 > 6V(x, x/8)

 Thus [V(x, x)/x] -> oo as x -- 0 by Proposition 1. 1

 3.2. Policy Function. A useful tool, related to the policy function, is the
 0-policy function defined for x E X by

 q(x) = h(x, x) for x E X

 102
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 That is, 0 gives us the optimal policy when the arguments in h happen to take on
 identical values.

 In the standard reduced-form model, if xt were constant for two successive
 periods along an optimal program, the constant value would have to be a stationary
 optimal stock. Here, given xt-1 = xt = x in X, 0(x) is not necessarily equal to x; in
 fact, it will typically be different from x. If 0(x) = x, then x would be a stationary
 optimal stock in the present framework.

 We proceed under the following additional assumption:

 (A9) There is A > 0, such that for all (x, y, z), (x', y', z') in A, lu(x, y, z) - u(x',
 y', z)l < All(x, y, z) - (x', y', z')l.

 Assumption (A9) is a bounded-steepness assumption on the utility function,
 and this is ensured by making u Lipschitz continuous, with Lipschitz constant A.
 The norm used in (A9) is the sum norm; that is, II(x, y, z)II = Ixl + lyI + Izl
 for (x, y, z) in R3. (In the usual reduced-form model, a condition like (A9) was
 introduced by Gale (1967), to establish the existence of shadow-prices, associated
 with optimal programs.)

 PROPOSITION 3. There is a > 0 such that for all x e (0, a), ¢(x) > x.

 PROOF. Suppose, on the contrary, there is a sequence (xS), such that xs -- 0 as
 s -- oo, and xS > 0, x(xs) < xs for all s.

 Using Proposition 2, we can find a > 0, such that for x E (0, al), we have

 (22) [V(x, x)/x] > 4A/(1- 8)

 Since xs -* 0, we can find s large enough for which 0 < xS < a1. Pick such an xs
 and call it x. Then x E (0, al) and 0(x) < x. Denote 0(x) by y, and h(x, y) by z.
 Since y < x, and (y, z) E Q, we have (x, z) E Q, and (x, y, z) E A, and

 V(x, x) > u(x, x, z) + SV(x, z)

 > u(x, x, z) + sV(y, z)

 = [u(x, x, z) - u(x, y, z)] + V(y, z) + u(x, y, z)

 = [u(x, x, z) - u(x, y, z)] + V(x, y)

 > V(x, y)- Ax

 the final inequality following from (A9). We can now write

 V(x, x) = u(x, x, y) + V(x, y)

 < u(x, x, y) + V(x, x) + SAx

 so that

 V(x, x) < [u(x, x, y)/(1 - )] + xAx/(1 - 8)

 < [A(2x + y) + AAx]/(1 - 8)
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 by using (A9) again. Thus, using y < x, we have [V(x, x)/x] < (3 + 8)A/(1 - 8)
 which contradicts (22). U

 We now introduce an additional assumption for our next result.

 (A10) u(B, B, B) < u(0, 0, 0) = 0.

 Assumption (A10) is an expression of the fact that "inaction" can produce at least
 as much utility as "excessive action." In the context of the standard aggregative
 growth model, considered in Section 2.4.1, it translates to the fact that the con-
 sumption level associated with the maximum sustainable stock is 0 and so is the
 consumption associated with the zero stock. Actually the standard aggregative
 growth model does not model disutility of effort directly. Typically, maintaining
 high stocks involves considerable effort, which has disutility, and this will reinforce
 the circumstances under which (A10) will hold.

 PROPOSITION 4. The 0-policy function satisfies

 (23) 0(B) < B

 PROOF. Suppose, on the contrary, that h(B, B) = B. Then, we have V(B, B) =
 u(B, B, B)/(1 - 8) < u(0, 0, 0)/(1 - 8) = 0. Define the sequence (xt) as follows:

 (xo, xl) = (B, B);xt = 0 for t > 2

 Then, (xt) is a program from (B, B), and we have

 stU(Xt, Xt+l, Xt,2) = u(B, B, 0) + 8u(B, 0,0) > 0
 t=O

 the inequality following from (A3) and (A6). This means that (B, B, 0, 0,...) and
 (B, B, B, B,...) are both optimal from (B, B). But, this contradicts the fact that u
 is strictly concave in the third argument. This establishes the result. 1

 PROPOSITION 5. There is some x* E (0, B), such that x* is a stationary optimal
 stock; that is,

 (24) h(x*, x*) = x*

 PROOF. By Proposition 4, 0(B) < B. By Proposition 3, we can find x E (0, B),
 such that q(x) > x. By continuity of ¢, there is x*e (0, B) such that +(x*) = x*.

 .
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 3.3. A Single Crossing Condition. In the following sections, we will find it
 useful to assume that the 0-policy function (introduced in Section 3.2) has the
 following "single-crossing property":

 f{SC) IThere is 0 < x* < B, such that

 (SC) (x*) = x*; x < 0(x) for O < x < x*; x > ¢(x) for x > x*

 Given Propositions 3 and 4, there is a stationary optimal stock in (0, B), and the
 single-crossing property holds if there is a unique stationary optimal stock in (0,
 B). Note that if x E (0, B) is a stationary optimal stock, then h(x, x) = x, and so

 (25) U3(x, x, x) + 82(x, X, x) + 2u1(X, X, X) = 0

 In the example discussed in Section 2.4.1, with w and f both C1, wl > 0 and w2 >
 0, denoting f(x) - x by c, condition (25) is satisfied only if

 [W2(c, c) + bWl(c, c)] = 8f'(x)[w2(C, ) + wil(C, c)]

 This implies that 8f'(x) = 1. Since f is strictly concave, there can be only one
 stationary optimal stock in (0, B), and the single-crossing property is verified.

 If u is C2 on A, then (25) has a unique solution if the function

 (26) H(x) = U3(x, X, x) 2(X, , x) + S2U(X, X, X)

 has a negative derivative, wherever it has a zero. This amounts to the condition

 (27) [82Ull + 8U22 + U33] + (82 + 1)U13 + 8(8 + 1)U12 + (8 + 1)U23 < 0

 being satisfied at any x (the derivatives being evaluated at (x, x, x)) at which
 H(x) = 0. For 8 m 1, (27) is clearly satisfied if u has a negative-definite Hessian.

 4. TURNPIKE BEHAVIOR

 In this section, we will provide sufficient conditions under which one can estab-
 lish global asymptotic stability of the stationary optimal stock (turnpike property).
 This demonstrates that "one can relax the independence assumption somewhat
 and still derive the usual known results," a point indicated earlier by Samuelson
 (1971), using local analysis around the turnpike. A crucial role in our global
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 analysis is played by the assumption of supermodularity of the utility function9
 in its three variables, a concept we define below analogously to the more familiar
 two-variable case.

 4.1. Supermodularity of the Utility Function. A function G: Q -- IR is super-
 modular if whenever (x, y), (x', y') E Q with (x', y') > (x, y), we have

 G(x, y) + G(x', y') > G(x', y) + G(x, y')

 provided (x', y) and (x, y') E Q. If G is C2 on Q, then it is well known that G is
 supermodular on Q if and only if G12 > 0 on Q.

 In our case, the utility function u : A --- I is a function of three variables, and
 we may define supermodularity of it as follows. In the C2 case, we would now
 like to have all the three cross-partials of u to be nonnegative; that is u12, u13, and
 u23 > 0 on A. In the general (not necessarily differentiable) case, this translates to
 the following definition.

 The utility function u : A - 1I is called supermodular on A if whenever (x, y,
 z), (x', y', z') E A with (x', y', z') > (x, y, z), we have

 (i) u(x, y, z) + u(x', y', z') > u(x', y, z) + u(x, y', z') provided (x', y, z) and
 (x, y', z') E A

 (ii) u(x, y, z) + u(x', y', z') > u(x, y', z) + u(x', y, z') provided (x, y', z) and
 (x' , z') E A

 (iii) u(x, y, z) + u(x', y', z') > u(x, y, z') + u(x', y', z) provided (x, y, z') and
 (x', y', z) A.

 If u is C2 on A with u12, u12, and u23 > 0 on A, then (i) can be verified

 as follows: A= [u(x', y', z') - u(x, y', z')] - [u(x', y, z) - u(x, y, z)] = fx ul(t,

 y', z') dt - f u(t, y, z)dt. Now u1(t, y', z') - ul(t, y, z) > 0 for all t E [x, x'],
 since u12 > 0 and u13 > 0, (y' - y) > 0 and (z' - z) > 0. Thus, we get A > 0,
 establishing (i). Conditions (ii) and (iii) can be verified similarly.

 Both of the above definitions are, of course, special cases of the general definition
 of supermodularity of a function on a lattice, as given by Topkis (1968, 1998).

 4.2. An Example. In order to understand the restriction imposed by the as-
 sumption of supermodularity of u, we consider the assumption in the context of
 the example discussed in Section 2.4.1, when w andf are both C2 on their domains.

 9 The supermodularity concept is due to Topkis (1968). A nice exposition of the concept in the
 two-variable case, and its relation to the nonnegativity of the cross partial derivative is given in Ross
 (1983). Benhabib and Nishimura (1985) introduced its use in optimal economic dynamics in the two
 variable case in the form of this derivative condition. More recent comprehensive studies involv-
 ing the concept of supermodularity can be found in Amir et al. (1991), Amir (1996), and Topkis
 (1998).
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 We can calculate the first-order partial derivatives of u as follows:

 u(x, y, z) = wi(f(x) - y, f(y) - z)f'(x)

 U2(X, y, Z) = W2(f(x) - y, f(y) - z) f'(y) - w(f(x) - y, f(y) - z)

 U3(X, y, ) = -W2(f(X) - y, f(y) - z)

 Since wl > 0 and w2 > 0, it follows that ul > 0 and u3 < 0, as required in (A6).
 The second-order cross-partial derivatives of u can be calculated as follows:

 U12(X, y, z) = [W12(f(x) - y, f(y) - z)f'(y) - Wll(f(x) - y, f(y) - z)]f'(x)

 U13(X, y, Z) = -f'(x)w12(f(x) - y, f(y) - z)

 U23(X, y, Z) = W12(f(x) - y, f(y) - Z) - W22(f(x) - y, f(y) - z)f'(y)

 Thus, in order for u to be supermodular, (i) we need the marginal utility of present
 consumption to be declining in past consumption (w12 < 0), sometimes referred
 to as Edgeworth-Pigou substitutability, and (ii) we need the magnitude of this
 cross effect (-w12) to be "small" relative to the magnitudes of the own effects
 (-wll) and (-W22). We state requirement (ii) loosely, since the magnitude of the
 marginal product of capital is involved beside the second-order derivatives of w.
 However, the requirement (ii) can be seen most transparently at the steady state,
 where Sf'(x*) = 1. There, the requirement of supermodularity translates to the
 condition that in the symmetric matrix

 -2(-_Wll) 8(-W12)
 W=

 (-W12) (-W22)

 where the diagonal terms dominate the off-diagonal terms.
 We now provide a specific example of the framework discussed in Section 2.4.1,

 to show that all the assumptions made on the reduced-form model can be verified
 with suitable restrictions on the parameters of the primitive-form. Consider the
 production function, f, defined by

 f(x) = px- qx2 for x e [0, (p - 1)/q] = [0, B]

 where 1 < p < 2 and q > 0, and the welfare function w is defined by

 w(c, d) = ac - bc2 + ad - fd2 - Ocd for (c, d) E X2

 where a > 0, b> 0, a > 0, a > 0, and 0 > 0. Note that at x = B = (p - l)/q, we
 have [f(x)/x] = p - qx = p - q[(p - l)/q] = 1. Also, f'(x) = p - 2qx for all
 x E X, so f'(0) = p and f'(B) = p - 2q[(p - l)/q] = 2 - p. Since 1 < p < 2, we
 have f'(0) > 1 > f'(B) > 0.
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 To ensure that w is increasing in both components of consumption, we impose
 the following restrictions:

 (R1) a-(0 + 2b)B > ; a-(0 + 2)B > O

 These restrictions ensure that ul(x, y, z) > 0 and u3(x, y, z) < 0 on A, since
 f'(x) > 0 on X.
 Notice that wll = -2b < 0 and w22 = -28 < 0, so, to ensure concavity of w, we

 can assume

 (R2) 02 < 4bf

 This ensures that u is concave on A, sincef is concave on X. Further, since U33(X, y,
 z) = W22(f(x) - y, f(y) - z) = -2p < 0, u is strictly concave in its third argument.
 We have w12 = -0 < 0 so that u13 > 0 on A. To ensure that u23 > 0 on A, we

 assume that (-w22)f'(B) > (-w12); that is,

 (R3) 2P(2 - p) > 0

 Finally, to ensure that ul2 > 0 on A, we assume that (-w1l) > (-w12)f'(0); that
 is,

 (R4) 2b > Op

 Thus, under the restrictions (R1)-(R4), assumptions (w), (f) are satisfied, and
 so are Assumptions (A1)-(A6). Further, u is supermodular on A.
 For specific numerical values of the parameters, ensuring that all the above
 restrictions are simultaneously satisfied, take p = (3/2), q = (1/2), so that B = 1
 and X= [0, 1]. Choosing b = f = 1, a = 3, a = 5, and 0 = (1/2), it is easy to check
 that the restrictions (R1)-(R4) are satisfied.

 4.3. Monotonicity of the Policy Function. The principal result (Theorem 1)
 of this subsection is that if the utility function is supermodular then the (optimal)
 policy function is monotone nondecreasing in each component.
 In the case usually treated, where the reduced form utility function is a function

 of two variables, if the utility function is supermodular, then the policy function is
 monotone nondecreasing, and this can be established by ensuring that the value
 function (a function of a single variable) is monotone nondecreasing. This prop-
 erty of the value function is straightforward, given the free-disposal property of
 the transition possibility set and the fact that the utility function is monotone
 nondecreasing in its first argument.
 In the present context, the value function is a function of two variables, and

 we need to show that the value function is supermodular in these two variables
 (Proposition 6), when the utility function is supermodular in its three variables.
 To obtain the supermodularity of the value function from the supermodularity of
 the utility function, the natural route suggested is to establish supermodularity for
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 each finite-horizon value function, and then obtain this property for the infinite
 horizon value function as a limit of the finite-horizon ones. The first part of this
 two-step procedure (Lemma 2) follows from the general result of Topkis (1968),
 so we state the result without a proof.

 LEMMA 2. Let G: Q2 -> I be a concave, continuous, and supermodular function
 on 2. If u is supermodular on A, then the function H : Q2 - R given by

 (P) H(x, y) = max [u(x, y, z) + 8G(y, z)]
 zE ,(y)

 is well defined, and is a concave, continuous, and supermodular function on Q2.

 PROPOSITION 6. If u is supermodular on A, then V is supermodular on Q2.

 PROOF. Define a sequence of functions, Vt : Q - R given by

 V°(x, y) = u(x, y, 0) and Vt+'(x, y) = max [u(x, y, z) + SVt(y, z)]
 zE ',(y)

 Then V° is a concave, continuous, and supermodular function on S2. Using
 Lemma 2, Vt is a concave, continuous, and supermodular function on Q for each
 t >0.

 Since lu(x, y, z)l < B on A, we have IVt(x, y)I < B/(1 - 8) on Q for all t > 0.
 To see this, note that it is clearly true for t = 0. Assuming this is true for t = T >
 0, we have

 IVT+l(x, Y)I B + 8[B/(1 - 8)] = B/(1 - 8)

 Thus IVt(x, y)l < B/(1 - 8) on 0 for all t > 0 by induction.
 We now proceed to show that Vt+l(x, y) > Vt(x, y) for t > 0, for all (x, y) E 2.

 For t = 0, we have

 Vl(x, y) = max [u(x, y, z) + 8V°(y, z)]
 z E @I(y)

 > u(x, y, O) + ±V°(y, 0)

 = u(x, y, 0) + Su(y, 0,0)

 > u(x,y, O)= V°(x,y)

 since u is nondecreasing in its first argument and u(0, 0, 0) = 0.
 Suppose Vt+l(x, y) > Vt(x, y) for t = 0,..., T where T > 0. We now show

 that the inequality must hold for t = T + 1 as well. Let z be the solution of the
 maximization problem

 max [u(x, y, z) + VT(y, z)]
 z E IY(y)
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 given (x, y) E Q. Then, by definition of VT+2, we have

 VT+2(x, y) > U(X, y, Z) + SVT+(y, Z)

 > u(x, y, z) + VT(y, z)

 = VT+(X, y)

 This completes the induction proof.
 For each (x, y) E 2, define

 V(x, y) = lim Vt(x, y)
 t- 00

 Then V is well defined and is a concave, continuous, and supermodular function
 on Q2.

 Given (x, y) E Q2, let zt be the solution to the maximization problem

 max [u(x, y, z) + SVt(y, z)]
 z E (y)

 Then, we have

 Vt+(x, y) = u(x, y, Zt) + Vt(y, zt)

 The sequence {zt} is bounded, and has a convergent subsequence, converging to
 some z; clearly z E T (y). For the subsequence on which z' converges to z, taking
 limits we have

 (28) V(x, y) = u(x, y, z)+ V(y, z)

 Also, for all z E 4 (y), we have

 Vtl (x, y) > u(x, y, z) + SVt(y, z)

 and so

 (29) V(x, y) > u(x, y, z) + 8V(y, z)

 Using (28) and (29) we have

 V(x, y) = max [u(x, y, z) + 8V(y, z)]
 z E I(y)

 Thus, V is the value function, V, of problem (10), and V is supermodular on Q2.

 THEOREM 1. If u is supermodular on A, then h is nondecreasing in each
 component.
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 PROOF. Let (x, y) and (x', y') e £2 with (x', y') > (x, y). Define z = h(x, y) and
 Z/ = h(x', y'). We claim that z' > z. Suppose, on the contrary, that z' < z. We know
 that

 V(x, y) = u(x, y, z) + SV(y, z)

 V(x', y') = u(x', y', z') + SV(y', z')

 Since (y, z) E £2 and z' < z, (y, z') E £2 and

 V(x, y) > u(x, y, z') + SV(y, z')

 Since (y, z) E £2 and y' > y, (y', z) E £2 and

 V(x', y') > u(x', y', z) + SV(y', z)

 Thus, we get

 (30) [U(x, y, z) + u(x', y', z')] + M[V(y, z) + V(y', z')

 > [U(x, y, z') ± u(x', y', z)] + 8[V(y, Z') ± V(y', z)]

 Since u is supermodular on A, and (x', y') > (x, y) and z > z',

 (31) u(x y, z') + U(X', y, z) Ž u(x, y, z) ± u(x', y', z)

 Since V is supermodular on £2, and y' > y and z > z',

 (32) 8[V(y, z') + V(y', z)] > S[V(y, z) ± V(y', z')]

 Adding (31) and (32), we contradict (30). U

 4.4. Global Dynamics. In this section we study the global dynamics of the
 two-dimensional dynamical system, (£2, F) where r is a map from £2 to £2 given
 by

 F(x, y) = (y, h(x, y))

 For (x, y) E £2, we have h(x, y) E 'P(y), and so (y, h(x, y)) E £.
 We maintain the assumption that u is supermodular on A, and so h is nonde-

 creasing in both its arguments. We also maintain the single-crossing condition on
 ~, introduced in Section 3.

 The principal result of this subsection (Theorem 2) is that if (Xt) is an optimal
 program from (x, y), where (x, y) E £2 and (x, y) » 0 , then xt converges to x* as t
 0- 0, thus exhibiting global asymptotic stability (turnpike property).

 THEOREM 2. Let (Xt) be an optimal program from (x, y) E £2 with (x, y) » 0.
 Then limt,,, xt = x*.
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 PROOF. Define m = min{xo, xl, x*} and M = max{xo, x, x* }, where x* is given
 by the single-crossing condition (SC).

 We show that xt > m for all t > 0. This is clear for t = 0, 1. Suppose Xt > m for
 t = 0,1,..., T, where T > 1; then

 (33) XT+1 = h(xT-1, XT) > h(m, m) > m

 The first inequality in (33) follows from the monotonicity of h in both arguments,
 the definition of m, and the fact that XT-1 and XT are at least as large as m. The
 second inequality follows from the fact that m < x* and condition (SC). This
 establishes by induction that Xt > m for t > 0.

 We show that xt < M for all t > 0. This being clear for t = 0, 1, suppose xt < M
 for t = 0, 1,..., T, were T > 1. Then

 (34) XT+1 = h(XT-1, XT) < h(M, M) < M

 The first inequality in (34) follows from the monotonicity of h in both arguments,
 the definition of M, and the facts that xT-1 < M, XT < Mby hypothesis. The second
 inequality follows from the fact that M > x* and condition (SC). This establishes
 by induction that xt < M for t > 0.

 We also note that

 (35) xt+l = h(xt_1, xt) < h(B, B) = 0(B)

 Define a = lim infto xt. We claim that a > x*. Otherwise, if a < x*, then using
 a > m > 0, we have ¢(a) > a and so we can find e > 0 such that (a - e) > 0 and
 0(a - E) > a + E. By definition of a, we can find N such that for t > N, Xt > (a -
 e). Thus, for t > N,

 Xt+2 = h(xt, Xt+l) > h(a - 8, a - E) = ¢(a - E) > a + e

 But, this means that lim inft,o xt > a + e is a contradiction. Thus, we must have
 a >x*.

 Define A = limsupto,, xt. We claim that A < x*. Suppose, on the contrary,
 A > x*. We know that A < 0(B) (by (35)) < B (by Proposition 4). Using condition
 (SC) we have q(A) < A, and so we can find e > 0 such that (A + E) < B, and
 0(A + E) < (A - 8). By definition of A, we can find N such that for t > N, Xt <
 (A + s). Thus for t > N,

 Xt+2 = h(xt, Xt+) < h(A+ E, A+ 8) = A(A+ E) < A-

 But, this means that lim supt_, xt < A - E is a contradiction. Thus, we must have
 A < x*.

 Since A > a, we have

 (36) x* > A> a > x*

 which proves that a = A= x*, and so (xt) converges and limt,o xt = x*.
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 REMARK 1. The style of proof is similar to that used in Hautus and Bolis (1979),
 but since the domain of definition of h and 0 are different in our framework from
 theirs, we cannot appeal directly to their result.

 4.5. Remarks on Models of Habit Formation. The literature on habit forma-
 tion10 studies optimization problems of the type described in Section 2.4.1. The
 model of Boyer (1978) on habit formation, where utility is assumed to be increas-
 ing both in current and in past consumption, can be treated as a special case of
 the model we described in Section 2.4.1.11 However, in many models of habit for-
 mation, utility is assumed to be increasing in present consumption, but decreasing
 in past consumption. The idea is that a high consumption in the past means that a
 person gets used to a higher standard, and therefore this has a negative effect on
 her evaluation of current consumption.

 Assumption (w) in the example described in Section 2.4.1 (and more generally
 assumption (A6) of the reduced-form model described in Section 2.1) rules out
 such environments of habit formation. However, the methods and results of our
 article continue to be applicable to some of these environments. We elaborate on
 this remark by presenting an example of habit formation where utility is assumed
 to be increasing in present consumption and decreasing in past consumption, and
 yet the main monotonicity and global asymptotic stability results of our article
 continue to hold.

 The framework of the example is similar to the one described in Section 2.4.1,
 with a production function, f, satisfying assumption (f), a discount factor, 8, satis-
 fying assumption (d); however, the welfare function, w, is a function from X2 to
 It, which satisfies

 (w') w is continuous and concave on X2, and strictly concave in the second
 argument; it is nondecreasing in the second argument and nonincreasing
 in the first argument.

 We now provide a specific example of this framework, which is a variation of
 the example discussed in Section 4.2. Consider the production function, f, defined
 by

 f(x) = px - qx2 for x E [O, (p - 1)/q] [0, B] = X

 Here p = (3/2) and q = (1/2), so that B = 1.
 The welfare function, w, is defined by

 w(c, d) = A[d/(1 + d)] - acb for (c, d) E X2

 where a E (0, 1), b > 2, and A > 4ab.

 10 See Boyer (1978), Abel (1990), and Deaton (1992) and the references cited by them for the main
 contributions to this literature.

 11 He does not look at the corresponding reduced-form model, and does not assume conditions on
 the primitive form that would ensure the supermodularity of the reduced-form utility function. Thus,
 in his model, unlike ours, it is "possible to experience cycles in consumption, investment, capital and
 the interest rate" (Boyer, 1978, p. 594).
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 The discount factor, 8, is chosen to be in (0.8, 1).
 For any x E (0, 1), we have f(x) > x, and so the stationary program (x, x,

 x,...) is feasible. Denoting f(x) - x by c, we note that c e (0, 1) is the constant
 consumption along this program. Given the form of w, we have w(c, c) > 0.

 Note that w is C2 on X2; the partial derivatives of w can be calculated as follows:

 wi(c, d) = -abcb-1 < 0

 W2(, d) = A/(1 + d)2 > 0

 wnl(c, d) = -b(b - )acb-2 < 0

 W12(C, d) = 0

 W22(C, d) = -2A/(1 + d)3 < 0

 Thus, w is clearly increasing in d and decreasing in c on X2. Further, it is strictly
 concave in (c, d) on X2. It can be checked that for all c e (0, 1), we have w (c, c) +
 w2(c, c) > 0, as required in the study of Samuelson (1971) and the habit formation
 model of Sundaresan (1989).

 The properties (A1)-(A4) of the corresponding reduced-form model (A, u, 8)
 can be verified quite easily. To verify other properties, we can compute the relevant
 first- and second-order partial derivatives of u as in Section 4.2. Since wi < 0 and
 W2 > 0, it follows that ul < 0 and U3 < 0, whereas u2 > 0. Note that (A6) is clearly
 violated. By definition of u, it is clearly concave (given concavity of w and f ) and
 continuous on A, so that (A5) is satisfied.

 Since w12 = 0 and wl1 < 0, W22 < 0, we have 1u3 = 0 and u12 > 0, u23 > 0. Thus,

 u is supermodular on A.12
 Assumption (A7) is clearly satisfied by definition of 8. To verify (A8), define

 x = (6/4). Then (x/8) = (1/4) and (x/82) = (1/48). Note that f(x/6) = f(1/4) =
 (11/32) > (10/32) > (1/4) = (x/82); it follows that f(x) > 6f(1x/) > (x/8).
 Thus, (x, (x/8), (x/82)) E A. Note that for x E (0, x/8), defining g(x) = f(x) -
 (x/8), we have g'(x) = (3/2) - x - (1/8) > (3/2) - (1/4) - (5/4) = 0. Thus, we
 have f(x/8) - (/82) > ) -x) - (x/8), and so using w2 > 0, we have

 u(X, (X/8), (X/82)) > w(f(x) - (X/a), f () - (/8)) > 0

 the last inequality following from the fact that w(c, c) > 0 for all c in (0, 1). Thus,
 (A8) is verified. Assumption (A9) is clearly satisfied since both f and w have
 bounded steepness. Finally, Assumption (A10) is satisfied, since u(0, 0, 0) = 0 =
 u(B, B, B). To summarize, in this example, all the assumptions except (A6) are
 satisfied; further, u is supermodular on A.

 12 In order to keep our example simple, we have used a form for w(c, d) for which wi2 = 0. However,
 this is not essential to the example. One can allow for functions w(c, d) in which w12 < 0, and the
 cross effect is small relative to the direct effects of w\l and w22, (as explained in Section 4.2) and still
 preserve the main results of this example.
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 Since the analysis in our article relies at various points on the use of assumption
 (A6), our methods are not directly applicable to this example of habit formation.
 However, slight modifications of our methods can be used to verify that (i) the
 policy function satisfies the single-crossing property; (ii) the value function is su-
 permodular on its domain, and the policy function is nondecreasing in each of its
 arguments. Thus, Theorem 2, which uses only these properties of the model, con-
 tinues to be valid in this example of habit formation. The details of this verification
 can be found in Mitra and Nishimura (2003).

 We should add that there are clearly models of habit formation which cannot be
 analyzed in terms of the methods used in our article, and the results of our article
 do not apply to those frameworks. For example, one might follow Abel (1990) and
 consider a particular specification of the habit-formation model where

 w(ct, ct+l) = (1/(1 - aO))(ct+l/ct)(l-a) where a E (0, 1)

 In this case, not only is wl < 0 and w2 > 0, so that the corresponding reduced-form
 model violates (A6), but w itself is not a concave function of (ct, ct+l), so that the
 corresponding reduced-form model also violates (A5). The dynamic optimization
 problem in (5) is then one involving a nonconcave objective function. This takes
 one beyond the scope of environments that can be handled with the methods used
 in our article.

 5. LOCAL DYNAMICS

 In this section, we provide an analysis of the local dynamics of optimal solutions
 near a stationary optimal stock. To this end, we study (in Section 5.1) the behavior
 of the optimal policy function (assuming that it is continuously differentiable in a
 neighborhood of the stationary optimal stock) and obtain restrictions on the two
 characteristic roots associated with the linearized version of it near the stationary
 optimal stock. Next, we show (in Section 5.2) that each of these characteristic roots
 must also be a characteristic root of the linearized version of the Ramsey-Euler
 equation near the stationary optimal stock. We then examine the fourth-order
 difference equation, which represents the linearized version of the Ramsey-Euler
 equations near the stationary optimal stock, and we show which two of them are
 selected by the optimal solution. The roots selected by the optimal solution provide
 information about the speed of convergence of nonstationary optimal trajectories
 to the stationary optimal stock. The assumption of supermodularity of the utility
 function is not used in the above analysis.

 In Section 5.3, the optimal policy function is shown to be continuously differ-
 entiable in a neighborhood of the stationary optimal stock, by using the Stable
 Manifold Theorem. This provides a rigorous basis for the analysis carried out in
 Sections 5.1 and 5.2.13

 13 Our proof of the continuous differentiability of the optimal policy function near the stationary
 optimal stock involves using the result as well as the method of proof of Theorem 2. Since the latter
 result was proved by us under the assumption of supermodularity of the utility function, we are not
 able to totally dispense with the supermodularity assumption in Section 5.
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 5.1. Characteristic Roots Associated with the Optimal Policy Function. We
 proceed with our local analysis of the optimal policy function by making strong
 smoothness assumptions.

 We assume that there is e > 0 such that the utility function is C2 in a neighbor-
 hood N = Q3 of (x*, x*, x*), (where Q = (x* - e, x* + e)) with ul > 0, u3 < 0,
 and u13 > 0, and a negative-definite Hessian on N. Further, we assume that there
 is a neighborhood M' of (x*, x*) on which V is C2 and h is C1.14 Clearly, we can
 choose a smaller neighborhood M of M' such that for all (x, y) in M, (x, y, h(x, y))
 is in N and (y, h(x, y)) is in M'.

 In terms of the example of Section 2.4, the restriction u13 > 0 is satisfied if w
 is C2 with w12 < 0 (and f is C1, with f' > 0). This restriction is quite important:
 It implies that the policy function is monotone increasing in the first argument
 on M.

 PROPOSITION 7. The policy function, h, satisfies hi(x, y) > 0 for (x, y) E M.

 PROOF. Let (x, y) E M. Then h(x, y) solves the maximization problem:

 Max [u(x, y, z) + V(y, z)]
 (y,z)E

 Since (y, h(x, y)) E M' and (x, y, h(x, y)) is in N,

 (37) U3(x, y, h(x, y)) + SV2(y, h(x, y)) = 0

 This is an identity in (x, y) E M, and so, differentiating with respect to x,

 u31(x, y, h(x, y)) + u33(, y, h(x, y))hl(x, y)+ 8V22(y, h(x, y))hl(x, y) = 0

 We have V22 < 0 (by concavity of V), and u33 < 0 (since the Hessian of u is negative
 definite); thus u33(X, y, h(x, y)) + V22(y, h(x, y)) < 0, and so hi(x, y) > 0. I

 If x* > 0 is the unique positive stationary optimal stock, another useful property
 of the optimal policy function may be obtained, namely, hi(x*, x*) + h2(x*, x*) <
 1. Recall that the circumstances under which there is a unique positive stationary
 optimal stock were discussed in connection with the single-crossing condition in
 Section 3.3.

 PROPOSITION 8. Suppose x* is the unique positive stationary optimal stock. Then

 hl(x*, x*) + h2(x*, x*) < 1

 14 The circumstances under which these smoothness assumptions hold are given in Section 5.3.
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 PROOF. Since [h(x, x) - x] > 0 for 0 < x < x*, and [h(x*, x*) - x*] = 0, we
 must have [h(x, x) - x] minimized at x = x* among all x E [0, x*]. Thus,

 hi(x*, x*) + h2(x*, x*) - 1 <

 which establishes the result. 1

 Given the nonlinear difference equation

 Xt+2 = h(xt, Xt+l)

 the linear difference equation associated with it (near the stationary optimal stock,
 x*) is given by

 (38) at+2 = qat + pat+1

 where q denotes hi(x*, x*) and p denotes h2(x*, x*), and at is to be interpreted as
 (xt - x*) for t > 0.
 The characteristic equation associated with Equation (38) is

 (39) )2 = q + p

 Denoting by Xi and X2 the roots of (39), we observe that

 01i + X2 = p
 (40)

 and i2 = -q J

 These are explicity given by the formula

 (41) X=[p /p2+4q]/2

 Under our assumptions we have the information that

 (42) q>0, p>O, p+q1<

 Since q > 0, we can use (40) to infer that the roots X1, X2 are real and they are of
 opposite signs. Without loss of generality, let us denote the positive root by Xi and
 the negative root by X2.
 Using (40), (42), we have

 1 > p + q = Xl + X2 - 2 = 1 + (1 - )X2

 so that

 (43) (1 - Xi) > (1 - Xl)X2
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 Now, if X1 > 1, then we would get (1 - i1) < 0, and (1 - X1)X2 > 0 (since X2 <
 0) contradicting (43). Thus, we can conclude that

 (44) 0 < A < 1

 Now, using (40), we have (-X2) = i1 - p _< 1 < 1. Thus, neither characteristic
 root can exceed 1 in absolute value.

 5.2. Characteristic Roots Associated with the Ramsey-Euler Equation. Con-
 sider the Ramsey-Euler equation:

 (45) u3(Xt, Xt+l, Xt+2) + u2(Xt+1, Xt+2, Xt+3) + 2U1(Xt+2, Xt+3, Xt+4) = 0

 In particular, of course, xt+s = x* for s = 0, 1, 2, 3, 4 satisfies (45):

 (46) U3(x*, X*, X*) + aU2(X*, X*, X*) + 82U1(X*, X*, X*) = 0

 If we use the mean value theorem around (x*, x*, x*) to evaluate the difference
 between the left-hand sides of (45) and (46), but ignore the second-order terms (so
 that one obtains a "first-order" or "linear" approximation to the difference) we
 get (dropping the point of evaulation (x*, x*, x*) to ease the writing) the expression

 82U138t+4 + (^2U12 + 8U23)St+3 + (82Ull1 + U22 + U33)8t+2 + (8U21 + U32)£t+l + U318t

 If we substitute ft+s for t+s (s = 0, 1, 2, 3, 4), and equate the resulting expression
 to zero, we get the characteristic equation associated with the Ramsey-Euler
 equation (45):

 (47)

 82U13 4 + (^2U12 + SU23)f3 + (^2Ull + U22 + U33) 2 + (8U21 + U32)8 + U31 = 0

 The idea is that the roots of this characteristic equation will reflect local behavior
 around the stationary optimal stock, x*, of solutions to Ramsey-Euler equations.

 We now show that the characteristic roots associated with the optimal policy
 function, which we analyzed in Section 5.1, must be solutions to the characteris-
 tic equation (47). By continuity of the optimal policy function, we can choose a
 neighborhood M of (x*, x*) such that for all (x, y) in M, (y, h(x, y)), (h(x, y), h(y,
 h(x, y))) and (h(y, h(x, y)), h(h(x, y), h(y, h(x, y))) are in M', and (x, y, h(x, y)), (y,
 h(x, y), h(y, h(x, y))) and (h(x, y), h(y, h(x, y)), h(h(x, y), h(y, h(x, y)))) are in N.
 Thus, the Ramsey-Euler equation yields the following identity in (x, y):

 (48) W(x, y) = u3(x, y, h(x, y)) + Su2(y, h(x, y), h(y, h(x, y)))

 + 82ul(h(x, y), h(y, h(x, y)), h(h(x, y), h(y, h(x, y)))) = 0
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 If we differentiate W with respect to x and evaluate the derivatives of u at (x*, x,*

 x*), and the derivatives of h at (x*, x*), then the derivative aW(x*, x*)Iax must be
 equal to zero. We can write the derivative (after dropping the points of evaluation
 (x*, x*, x*) and (x*, x*) to ease the writing) as

 aW(x*, x*)/ax = u31 + U33h ± S[U22h1 + U23h2h1j

 + 82[ulihi + U12h2h1 + U13(h1)2 + U13(h2)2hi]

 = U31 + [U33 + 8U22 + 82u11]hi + 8[U23 + 8U12]hlh2

 + 82U13[(hi)2 + (h2)2hul

 Denote [U33 + 8U22 + 82U11] by C, and [u23 + Mu12] by i. Then, we have

 (49) aW(x*, x*)/ax = u31 -+ Chi + Sbhhh2 + 82U13[(h1)2 + (h2)2h1] = 0

 Similarly, if we differentiate W with respect to y, and evaluate the derivatives
 of u at (x*, x*, x*), and the derivatives of h at (x*, x*), then the derivative aW(x*,
 x*)Iay must be equal to 0. We can write the derivative (after dropping the points
 of evaluation (x*, x*, x*) and (x*, x*) to ease the writing) as

 a W(x*, x*)/ay = u32 + U33h2 + 8[ U21 + U22h2 + U23h1 + u23(h2)21

 + 82 [uiih2 + U12h1 + U12(h2)2 + 2u13h1h2 + U13(h2)3]

 = u32 + 8U21 ± 6h2 + Sbhh + 2U2U13h1h2 + SD(h2)2 + U2u13(h2)3

 Rearranging terms yields the following derivative:

 (50) a W(x*, x*)/ay = (U32 + 8U21) + Ch2

 +SDB[h1 + (h2)2] + 82u13[2h1 + (h2)2]h2 = 0

 We recall from Section 5.1 that if X. is a characteristic root associated with the

 optimal policy function, then (X)2 - h2X + hl. Using this information in (49) and
 (50), we get:

 aW(x*, x*)/ax + XdW(X*, x*)/ay = U31 + [U32 + SU21fX + C(hi + h2X)

 + SDB[h,X + (h2)2X + h1h2]

 + s2U13[(hi)2 + (h2)2h, + 2h1h2X + (h2)3X]

 = U31 + [U32 + 8U21]X + cx2 + DB[h1X + h2X2]

 + 82U13[hi(hi + h2X) + hih2X

 + (h2)2 [hi ± h2X]]
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 = U31 + [U32 + SU21]X + (C2 + 8DI3

 + 82U13[hl 2 + hlh2X + (h2)2X2]

 = U31 + [U32 + SU21]X + (A2 + DbX3

 + 82U13[hlX2 + h2X3]

 = U31 + [U32 + 8U21] + Cx2 + sDb3 + 82U13X4

 =0

 This completes the verification of our claim.
 We now show how the characteristic roots associated with the optimal policy

 function (analyzed in Section 5.1) can be found by calculating the characteristic
 roots of (47).

 Notice that / = 0 is not a solution to (47) since u13 & 0. We can, therefore, use
 the transformed variable

 u = 8t + (1/W)

 to examine the roots of (47). Using this transformation, (47) becomes

 (51) U132+ (12 + + U23)l + [S2U11 + 8U22 + U33 - 2U13] = 0

 Let us define G : R > R by

 (52) G(t/) = U1312 + (8U12 + U23)p + [82Ull + 8U22 + U33 - 26U13]

 Since the Hessian of u is negative definite, we have ull < 0, U22 < 0, U33 < 0, and
 since u13 > 0, we have

 [^2U11 + 8U22 + U33 - 28U13]/U13 < 0

 Denoting the roots of (51), which is a quadratic in /, by /I and A2, we note that

 (53) 11i2 < 0

 so these roots are necessarily real. We denote the positive root by ,u/ and the
 negative root by /2.
 Given ,ti (i = 1, 2), we can obtain the corresponding roots of / by solving the

 quadratic

 (54) 83 + (1//) = i

 We denote the roots of (54) corresponding to /1 by /3 and P2 (with 1fi1 = min[/i1 1,
 1/21]) and the roots of (54) corresponding to /2 by P3 and P4 (with 1/31 = min[lP3 1,
 1P41]).
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 Define the function F : R2 - IR by

 (55) F(,; m) = S82 - mf + 1

 Then f1 and f2 are the roots of F(P; it) = 0, and P3 and f4 are the roots of
 F(P; t2) = 0.

 Using our analysis in Section 5.1, we can show that the roots fB and P2 are real,
 and

 (56) 0 < l 1 < P2

 To see this, recall that 1i and X2 are solutions of (39). These are real and of
 opposite signs. Thus, examining (55), it is clear that X1 and X2 must correspond to
 different ti. This means that pf and P2 are real, and so are 83 and f4.
 Now, note that since f3B and i2 solve the equation

 (57) 8p2 - _iB + 1 = 0

 and 1q > 0, we have 81P2 = (1/3) > 0 and (p1 + P2) = (1/s8) > 0. Thus, P1 and
 P2 are both positive.
 Since f3 and P4 are roots of the equation

 (58) Sf32 - 2,l + 1 = 0

 we have P834 = (1/)) > 0 and P3 + P4 = (I2/8) <0. Thus P3 and P4 are of the
 same sign, and they must both be negative.
 It follows from the above analysis that X1 must be one of the roots 31 and z2,

 and X2 must be one of the roots P3 and P4. Further, since X1 < 1, and P1l2 =
 (1/8) > 1, X1 = /3 and P2 > (1/8). This establishes (56).
 Similarly, we can show that

 (59) 0 > P3 1 -1 > 4

 Since (-X2) < 1, and P834 = (1/8) > 1, (-X2) = (-P3) and (-P4) > (1/8). This
 establishes (59).

 5.3. Differentiability of the Optimal Policy Function. In Section 5.1, we as-
 sumed that the optimal policy function was continuously differentiable in a neigh-
 borhood of the steady state, x*. We used this to obtain the characteristic roots
 associated with the optimal policy function, and to relate them (in Section 5.2)
 to the characteristic roots associated with the Ramsey-Euler equation. To com-
 plete our analysis, we need to show that the optimal policy function is indeed
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 continuously differentiable in a neighborhood of the steady state, x*. We do this
 by applying the Stable Manifold Theorem.15
 We have seen in Section 5.2 that the characteristic roots (i1, P2, 43, 4) associ-

 ated with Equation (47) satisfy the restrictions

 (60) 4 < -1 < P3 < 0 < P1 < 1 < 82

 We assume now that the generic case in (60) holds; that is, the weak inequalities
 in (60) are replaced by strict inequalities

 (61) P4 < -1 < /3 < 0 < 1 < 1 < 2

 We wish to analyze the behavior of the Ramsey-Euler dynamical system near
 the steady state, x*. To this end, we define

 F(v, w, x, y, z) = u3(v, w, x)+ 8U2(W, , y)+ ^2ul(X, y, z)

 in a neighborhood N' = Q5 of (x*, x*, x*, x*, x*) (where Q = (x* - E, x* + e) and
 E is as given in Section 5.1). Then, F is C1 on N'. We note that

 D5F(x*, x*, x*, x*, x*) = 82U13(X*, x*, x*) 5 0

 and so we can apply the implicit function theorem16 to obtain an open set U
 containing (x*, x*, x*, x*), and an open set V containing x*, and a unique function
 : U -- V, such that

 (62)

 U3(v, W, x) + 8u2(w, x, y) + ^2U,(X, y, ((v, w, x, y)) = 0 for all (v, w, x, y) E U

 and

 (63) ¢(x*, x*, x*, x*) = x*

 Further, ( is C1 on U. Clearly, we can pick an open set U C U, with U containing
 (x*, x*, x*, x*), such that (0[) c Q.
 Define the set U' = {(v', w', x', y') e I4 : (V', w', x', y') = ( - x*, w - x*, x -

 x*, y - x*) for some (v, w, x, y) E U). Thus, U' is a neighborhood of (0, 0, 0, 0), a

 15 The use of stable manifold theory to optimal growth was pioneered by Scheinkman (1976). Since
 then, it has figured prominently in the theoretical work of Araujo and Scheinkman (1977) and Santos
 (1991) and in numerous applications of this theory to dynamic macroeconomic models.

 16 See, for example, Rosenlicht (1986), pp. 205-09.
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 translation of the set U by subtraction of the point (x*, x*, x*, x*) from each point
 (v, w, x, y) E 6r. Now, define C: U' -+ 1R4 as follows:

 G 1X1 X2, X3, X4) = X2

 G2(X1 X2, X3, 4)) X3
 (64)

 G3X, X2, X3, X4) X X

 G4(X, X2, X3, X4) = PD(X* + Xi, X* + X2, X* + X3, X* + A4) -+

 Note that G(O, 0, 0, 0) = (0, 0, 0, 0), using (63).
 The Ramsey-Euler dynamics near the steady state is governed by (62). This

 gives rise to the (four-dimensional) dynamical system

 (65) Xt+l = G(Xt)

 In order to apply the standard form of the Stable Manifold Theorem, however,
 we need to transform the variables appearing in this dynamical system.
 To this end, we proceed as follows. Given G, we can calculate the Jacobian

 matrix of G at (0, 0, 0, 0) as

 (66)

 JG(O) =

 o 0 0

 o 0 1 0

 0 0 0 1

 - cli(x*,X*,X*,X*) (D2(X,Xx> x*,X*) 1D3(X*,X*,X*,X*) PD4(x*,X*,X*,X*)

 The entries in the last row of JG(0) can be related to the second-order derivatives

 of u at (x*, x*, x*). Differentiating (62) with respect to v, w, x, y and evaluating
 the relevant derivatives at (v, w, x, y) = (x*, x*, x*, x*), we obtain

 (67) u31(x*, x*, x*) 62 U13(x*, x*, x*)(1l(X*, X*, x*, X*) = 0

 u32(X*, X*, x*) + 8U21(X*, X*, x*) + 82U13(x*, X*, x*)cP2(x*, X*, X*, x*) = 0

 U33(X*, x*, x*) + 8U22(X*, X*, x*) + 82U11(X* , x x*)

 +82U13(x*, X*, x*)PD3(x*, X*, X*, x*) = 0

 8U23(X*, X*, x*)+ U2U12(x*, X*, x*) + U2u13(x*, x", x*)t4(x*, x*, x*, x*) = 0
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 These equations yield

 (68)
 (X*, x*, *, X*)= -(1/82)

 D2(X*, x*, , *) [U32(X*, X*, x*)+ U21(X*, X*, x*)]

 [U33(X*, X*, X*) + 8U22(X*, X*, X*) + 62Ull(X*, X*, *)]

 82U13(X*, X*, X*)

 [SU23(X*, X*, x*) + 82U12(X*, X*, X*)]
 cP4(.x* x~ , x~ , x*) - 82U13(X*, X*, X*)

 Define the Vandermonde matrix

 1 1 1 1

 _ 1 /3 2 /4
 (69)

 _, /2 ,2 /32

 Note that the unusual order in the Vandermonde matrix is to be explained by the
 fact that the characteristic roots 1i and /3 are less than one in absolute value, while

 P2 and P4 are greater than one in absolute value. (This order becomes important
 in the application of the Stable Manifold Theorem below.) Define the diagonal
 matrix of characteristic values

 B1 ° O O
 0 30 0 0

 (70) I =
 0 0 f2 0

 0 0 0 f/4

 Now, denoting by A the Jacobian matrix JG(O), we can verify (using (66), (68), and
 (47)) that

 P1 P3 fi2 fi4

 P2 f2 pi2 P2
 (71) AP= PB =

 _1 3 2 4

 This means that (B1, i3, /2, f/4) are the characteristic roots of A, with the column
 vectors of P constituting a set of characteristic vectors of A, corresponding to
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 these characteristic roots. The Vandermonde matrix is known to be nonsingular,17
 so we get the spectral decomposition

 (72) P-lAP = B

 Returning now to our dynamical system (65), we rewrite it as

 (73) Xt+l = AXt + [G(Xt) - AXt]

 Multiplying through in (73) by p-1, we obtain

 (74) P-X+l = (P-1AP)P-1Xt + [P-G(PP-Xt) - (P-1AP)P-1Xt]

 Thus, using (72), and defining new variables Y = P-1X, we get

 (75) Y+1i = Bt + [P-lG(PY) - Bt]

 Denote by U the set {Y: Y= P-1Xfor some X U'}, and define g: U - IR4
 as follows:

 (76) g(Y) = P-1G(PY) - BY

 Note that by (64), we have

 (77) g(0, 0, 0,) =(0, 0, 0, 0)

 Also, we obtain by differentiating (76) and evaluating the derivatives at (, 0, 0, 0)

 (78) Jg(O) = P-JG(PO)P - B = P-JG(O)P- B = P-lAP - B = 0

 Thus, the dynamical system (75) can now be written as

 (79) t+l = IY + g(t)

 with g(0) = 0 and Jg(O) = 0.
 The Stable Manifold Theorem can be applied to the dynamical system (79).

 We give below the particular statement of it (due to Irwin, 1970) that is directly
 applicable.18

 Stable Manifold Theorem for a Fixed Point (Irwin): Let E = E1 x E2 be a
 Banach Space and let T1 : E1 -- E1 and T2: E2 --) E2 be isomorphisms with
 max{Il Ti 11, II T 11 } < 1. Let U be an open neighborhood of 0 in E and let g :
 U -> E be a C map (r > 1) with g(0) = 0 and Dg(O) = 0. Let f = T1 x T2 + g.

 17 Several methods are known for computing the inverse of a Vandermonde matrix. For one such
 approach, see Parker (1964).

 18 A good exposition of Irwin's result can be found in Franks (1979).
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 Then, there exist open balls C and D centered at 0 in E1 and E2, respectively, and
 a unique map H: C -> D such that f(graph(H)) c graph(H). The map H is cr
 on the open ball C and DH(O) = 0. Further, for all z E C x D, fn(z) -> 0 as n ->
 oo if and only if z e graph(H)).
 To apply the theorem, we define the maps T1 : 1R2 -> IR2 and T : I2 -2 R2 as

 follows:

 / 0 Zi /T2 0 Zi
 Ti(z)= ; T2(Z) =

 0 /3, _Z2 0 _4 Z2

 Note that

 (1/f2) 0 Z1
 T-1 (z') =

 0 (1/4)_ _Z2_

 so that, using (61), we have II T,1I < 1 and II T21 1 < 1. Applying the theorem in our
 context (with r = 1) we get the C1 function H with the properties stated above.
 We wish to conclude from this that the policy function, h, is C1 in a neighborhood
 of (x*, x*).

 First, we note that H(0, 0) = (0, 0). To see this, we check that f(0,, 0, 0) = g(0,
 0, 0, 0) = (0, 0, 0, 0) by (77), so that f"(0, ,0, 0,0) = (0, 0, 0, 0), and so by the Stable
 Manifold Theorem, (0, 0, 0, 0) e graph(H). That is, H(0, 0) = (0, 0).

 Next, we define a function, K: R2 x R2 x C -- I4 as follows:

 (80) K(a, b, z)= P-(a, b) - (z, H(z))

 Clearly, K is C1 on its domain, and K(0, , 0, 0, 0, 0) = (0, 0, 0, 0), since H(0, 0) =
 (0, 0). Further, the matrix (DjKi(O, 0, 0, 0, 0, 0)), where i = 1, 2, 3, 4 and j = 3, 4,
 5, 6 can be checked to be nonsingular. To see this, denote p-1 by R, and write R
 as follows:

 R11 R12
 R=

 R21 R22

 where each Rij (with i = 1, 2; j = 1, 2) a 2 x 2 matrix. Then, we have

 R12 -I
 (Dj K(O, 0, 0, 0, 0,)) -=

 R22 0

 where I is the 2 x 2 identity matrix, and 0 is the 2 x 2 null matrix. Thus, the matrix
 (DjKi(O, , 0, 0, 0, 0)) is nonsingular if and only if R22 is nonsingular. To verify that
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 R22 is nonsingular, we write (by definition of R)

 Rll R12 P11 P12 I 0

 R21 R22 P21 P22 0 1

 where each Pij (with i = 1, 2; j = 1, 2) is a 2 x 2 submatrix of P. This yields the
 equations

 R21Pll + R22P21 = 0

 R 21 P12 + R22 P22 = I

 Clearly, Pl1 is nonsingular, since det(Pl1) = P3 - 1 <0 (by (61)). Thus, R21 =
 -R22 P21P;1- (from the first equation of (81)) and using this in the second equa-
 tion of (81), we obtain R22[P22 -P21 PP12] = I. This establishes that R22 is
 nonsingular.

 We can now use the implicit function theorem to obtain an open set E' c I2
 containing (0, 0), an open set C' c C containing (0, 0), and an open set E" c I2
 containing (0, 0), and unique functions L1 : E' - E" and L2 : E -- C', such that

 (82) K(a, Ll(a), L2(a)) = 0 for all a E E'

 and

 (83) L(0, 0) = (0, 0); L2(0, 0) = (0, 0)

 Further, L1 and L2 are C1 on E'. Using the definition of K, we have from (82)

 (84) P-l(a, Ll(a)) = (L2(a), H(L2(a))) for all a E E'

 Now, we look at the optimal policy function, h. Pick 0 < s' < E (where e is given
 as in Section 5.1) so that (-e', e')4 c U' (where U' is given as in (64)), and P-lz E
 C x D for all z E (-e', e')4. Denote (-e', ') by S.

 Pick any (Zl, Z2) e S2. Define (Xl, x2) = (x*, x*) + (Zl, Z2). Then the sequence
 {xt} satisfying Xt+2 = h(xt, Xt+l) for t > 1 is well defined and xt -) x* as t -- oo.
 Thus, the sequence {zt} satisfying Zt = Xt - x* for t > 1 is well defined and Zt -- 0
 as t -- oo. Further, since (Zl, Z2) e S2, we have zt E S for all t > 1 (by the proof of
 Theorem 2). Then, we have

 (85) (Zt, Zt+l, Zt+2, Zt+3) E U' for t > 1

 and

 P-l(t, Zt+l, Zt+2, Zt+3) E C x D for t > 1
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 Using (64) and (85), we can write for t > 1,

 (87) f(P 1(zt, Zt+1, Zt+2, Zt±3)) =P 1(Zt+l, Zt+2, Zt±3, c1(x* ±Zt, X* ±Zt±1,

 X* + Zt2 X* + Zt±3) - x)

 Using (48), we have for t > 1,

 (88) u3 (X* + Zt, X* ± Zt+l, X* ± Zt+2) ± 8u2 (X* ± Zt±l, X* + Zt+2, X* + Zt±3)

 ±32U1 (x* ± Zt±2, X* ± Zt±3, X* ± Zt±4) = 0

 Using (62) and (85), we have for t > 1,

 (89)

 U3 (X* ± Zt, X* + Zt±l, X* + Zt+2) + 8U2 (X* + Zt+l, X* + Zt±2, X* ± Zt+3)

 ±862U1 (X* + Zt±2, X* ± Zt±3, (1)(x* ± Zt, X* ± Zt±l, X* ± Zt±2, X* + Zt±3)) = 0

 Note that by (85), PD(x* ± Zt, X* + Zt+l, X* + Zt+2, X* + Zt±3) E Q. Sinceu13 > 0 on
 Q3, (88) and (89) yield (by an application of the mean value theorem)

 (90) tD(X*±+Zt, X*±+Zt±l, X*±+Zt±2, X*±Zt±3) = X*±+Zt±4

 Using (90) in (87), we 'Obtain

 (91) f(P 1(Zt, Zt±l, Zt±2, Zt±3)) = P 1(Zt±l, Zt±2, Zt+3, Zt±4)fot>1

 We can infer from (91) that

 (92) fnP1(Z1, Z2, Z3, Z4)) = P '(z,,±l, Zn±+2, Zn±3, Zn+4)fon 1

 Since the right-hand side of (92) converges to (0, 0, 0, 0) as n -÷* oc, we must have
 fnl(p 1(Z1, Z2, Z3, Z4)) -+(0, 0, 0,0) as n --* oc. By the Stable Manifold Theorem,
 then, we must have

 (93) P1 1(ZI, Z2, Z3, Z4) E graph(H)

 Define a function Vf S2 -* R~2by

 ifr(zi. z2) =(h(x* + zl, x* ± Z2) x*, h(x* ± z2, h(x* + Zl, X* ± Z2)) - X*)

 for all z E S

 Then ifr(0, 0) =(0, 0) and (93) shows that, given any z = (Z1, Z2) ES~2, we must
 have P 1(z, 4'(z)) E graph(H). Thus, given any z e- S2, there is z' E C, such that

 p- 1 (z, if(z)) = (z', H(z'))
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 Clearly, such a z' must be unique. Thus, there is a function, K : S2 -+ C such that

 (94) P- (z, r(z)) = (K(z), H(K(z))) for all z E S2

 Note that since 4r(0, 0) = (0, 0), (94) implies that K(0, 0) = (0, 0). Defining S' =
 S2 n E', we have from (94),

 (95) P-l(z, r(z)) = (K(z), H(K(z))) for all z E S'

 On the other hand, from (84), we have:

 (96) P-l(z, L(z)) = (L2(z), H(L2(z))) for all z E S'

 Since L1 and L2 are the unique functions satisfying (96) and (83), and since Gr(0,
 0) = (0, 0) and IK(0, 0) = (0, 0), we must have r = L1 and K = L2 on S'. Since L1
 is C1 on S', we can conclude that 4 is C1 on S'. Using the definition of r, it follows
 that the optimal policy function, h, is C1 on S'.

 6. CONCLUDING REMARKS

 The purpose of the article was to complete the program sketched in the contri-
 bution of Samuelson (1971), by providing both a complete local and global analysis
 of the model under which the standard results of the Ramsey model continue to
 hold even with dependence of tastes between periods. We approached the prob-
 lem by trying to identify structures in the reduced form of the model under which
 this would be true. The reduced form model involves a utility function which de-
 pends on the values of the state variable (capital stock) at three successive dates
 (instead of the usual two).We showed that supermodularity of the reduced form
 utility function (in the three variables), and a single-crossing condition provides
 such a structure. The methods used indicate that our results should generalize to
 situations in which the reduced form utility function depends on the values of the
 state variable in more than three periods (which correspond to situations in which
 utility function used to evaluate current consumption depends on several periods
 of past consumption).

 We examined the implication of this structure for the model of Samuelson (1971)
 with intertemporal dependence of tastes. Our analysis indicated the conditions on
 the primitive form of the model under which the assumptions on the corresponding
 reduced form are met. It also indicated plausible scenarios in which the stated
 assumptions on the reduced-form would not be satisfied. Thus, identifying these
 assumptions provides a good handle on the richer dynamics that this model can
 generate when these assumptions fail; exploration of this topic is undertaken in
 Mitra and Nishimura (2001).

 Application of our methods to models of habit formation is a natural direction
 of enquiry. The model of Boyer (1978) on habit formation, where utility is assumed
 to be increasing both in current and in past consumption, can be accommodated in
 our framework. Other frameworks of habit formation, where utility is increasing
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 in present consumption, but decreasing in past consumption, are ruled out by the
 basic assumptions of our model. However, we indicated with an example that our
 methods and results are valid in some of these frameworks of habit formation as

 well. Models of habit formation leading to nonconcave utility functions cannot
 be directly addressed by the methods of this article, and constitute a potentially
 interesting area of future research.
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